Strong proximinality of closed convex sets

نویسندگان

  • S. Dutta
  • P. Shunmugaraj
چکیده

We show that in a Banach space X every closed convex subset is strongly proximinal if and only if the dual norm is strongly sub differentiable and for each norm one functional f in the dual space X∗, JX(f) the set of norm one elements in X where f attains its norm is compact. As a consequence, it is observed that if the dual norm is strongly sub differentiable then every closed convex subset of X is strongly proximinal if and only if the metric projection onto every closed convex subsets of X is upper semi-continuous.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Functionally closed sets and functionally convex sets in real Banach spaces

‎Let $X$ be a real normed  space, then  $C(subseteq X)$  is  functionally  convex  (briefly, $F$-convex), if  $T(C)subseteq Bbb R $ is  convex for all bounded linear transformations $Tin B(X,R)$; and $K(subseteq X)$  is  functionally   closed (briefly, $F$-closed), if  $T(K)subseteq Bbb R $ is  closed  for all bounded linear transformations $Tin B(X,R)$. We improve the    Krein-Milman theorem  ...

متن کامل

On Proximinality of Convex sets in Super Spaces

In this paper, we show that a closed convex set C of a Banach space is strongly proximinal (proximinal, resp.) in every Banach space isometrically containing it if and only if C is locally (weakly, resp.) compact. As a consequence, it is proved that local compactness of C is also equivalent to that for every Banach space Y isometrically containing it, the metric projection from Y to C is nonemp...

متن کامل

Best Approximation in Metric Spaces

A metric space (X, d) is called an M-space if for every x and y in X and for every r 6 [0, A] we have B[x, r] Cl B[y, A — r] = {2} for some z € X, where A = d(x, y). It is the object of this paper to study M-spaces in terms of proximinality properties of certain sets. 0. Introduction. Let (X, d) be a metric space, and G be a closed subset of X. For x E X, let p(x,G) = inf{d(x, y) : y E G}. If t...

متن کامل

Some results on functionally convex sets in real Banach spaces

‎We use of two notions functionally convex (briefly‎, ‎F--convex) and functionally closed (briefly‎, ‎F--closed) in functional analysis and obtain more results‎. ‎We show that if $lbrace A_{alpha} rbrace _{alpha in I}$ is a family $F$--convex subsets with non empty intersection of a Banach space $X$‎, ‎then $bigcup_{alphain I}A_{alpha}$ is F--convex‎. ‎Moreover‎, ‎we introduce new definition o...

متن کامل

Various Notions of Best Approximation Property in Spaces of Bochner Integrable Functions

We show that a separable proximinal subspace of X, say Y is strongly proximinal (strongly ball proximinal) if and only if Lp(I, Y ) is strongly proximinal (strongly ball proximinal) in Lp(I,X), for 1 ≤ p <∞. The p =∞ case requires a stronger assumption, that of ’uniform proximinality’. Further, we show that a separable subspace Y is ball proximinal in X if and only if Lp(I, Y ) is ball proximin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of Approximation Theory

دوره 163  شماره 

صفحات  -

تاریخ انتشار 2011